1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
//! # Day 13: Packet Scanners
//!
//! You need to cross a vast **firewall**. The firewall consists of several layers, each with a
//! **security scanner** that moves back and forth across the layer. To succeed, you must not be
//! detected by a scanner.
//!
//! By studying the firewall briefly, you are able to record (in your puzzle input) the **depth** of
//! each layer and the **range** of the scanning area for the scanner within it, written as
//! `depth: range`. Each layer has a thickness of exactly `1`. A layer at depth `0` begins
//! immediately inside the firewall; a layer at depth `1` would start immediately after that.
//!
//! For example, suppose you've recorded the following:
//!
//! ```txt
//! 0: 3
//! 1: 2
//! 4: 4
//! 6: 4
//! ```
//!
//! This means that there is a layer immediately inside the firewall (with range `3`), a second
//! layer immediately after that (with range `2`), a third layer which begins at depth `4` (with
//! range `4`), and a fourth layer which begins at depth `6` (also with range `4`). Visually, it
//! might look like this:
//!
//! ```txt
//!  0   1   2   3   4   5   6
//! [ ] [ ] ... ... [ ] ... [ ]
//! [ ] [ ]         [ ]     [ ]
//! [ ]             [ ]     [ ]
//!                 [ ]     [ ]
//! ```
//!
//! Within each layer, a security scanner moves back and forth within its range. Each security
//! scanner starts at the top and moves down until it reaches the bottom, then moves up until it
//! reaches the top, and repeats. A security scanner takes **one picosecond** to move one step.
//! Drawing scanners as `S`, the first few picoseconds look like this:
//!
//! ```txt
//!
//! Picosecond 0:
//!  0   1   2   3   4   5   6
//! [S] [S] ... ... [S] ... [S]
//! [ ] [ ]         [ ]     [ ]
//! [ ]             [ ]     [ ]
//!                 [ ]     [ ]
//!
//! Picosecond 1:
//!  0   1   2   3   4   5   6
//! [ ] [ ] ... ... [ ] ... [ ]
//! [S] [S]         [S]     [S]
//! [ ]             [ ]     [ ]
//!                 [ ]     [ ]
//!
//! Picosecond 2:
//!  0   1   2   3   4   5   6
//! [ ] [S] ... ... [ ] ... [ ]
//! [ ] [ ]         [ ]     [ ]
//! [S]             [S]     [S]
//!                 [ ]     [ ]
//!
//! Picosecond 3:
//!  0   1   2   3   4   5   6
//! [ ] [ ] ... ... [ ] ... [ ]
//! [S] [S]         [ ]     [ ]
//! [ ]             [ ]     [ ]
//!                 [S]     [S]
//! ```
//!
//! Your plan is to hitch a ride on a packet about to move through the firewall. The packet will
//! travel along the top of each layer, and it moves at **one layer per picosecond**. Each
//! picosecond, the packet moves one layer forward (its first move takes it into layer 0), and then
//! the scanners move one step. If there is a scanner at the top of the layer **as your packet
//! enters it**, you are **caught**. (If a scanner moves into the top of its layer while you are
//! there, you are **not** caught: it doesn't have time to notice you before you leave.) If you were
//! to do this in the configuration above, marking your current position with parentheses, your
//! passage through the firewall would look like this:
//!
//! ```txt
//! Initial state:
//!  0   1   2   3   4   5   6
//! [S] [S] ... ... [S] ... [S]
//! [ ] [ ]         [ ]     [ ]
//! [ ]             [ ]     [ ]
//!                 [ ]     [ ]
//!
//! Picosecond 0:
//!  0   1   2   3   4   5   6
//! (S) [S] ... ... [S] ... [S]
//! [ ] [ ]         [ ]     [ ]
//! [ ]             [ ]     [ ]
//!                 [ ]     [ ]
//!
//!  0   1   2   3   4   5   6
//! ( ) [ ] ... ... [ ] ... [ ]
//! [S] [S]         [S]     [S]
//! [ ]             [ ]     [ ]
//!                 [ ]     [ ]
//!
//!
//! Picosecond 1:
//!  0   1   2   3   4   5   6
//! [ ] ( ) ... ... [ ] ... [ ]
//! [S] [S]         [S]     [S]
//! [ ]             [ ]     [ ]
//!                 [ ]     [ ]
//!
//!  0   1   2   3   4   5   6
//! [ ] (S) ... ... [ ] ... [ ]
//! [ ] [ ]         [ ]     [ ]
//! [S]             [S]     [S]
//!                 [ ]     [ ]
//!
//!
//! Picosecond 2:
//!  0   1   2   3   4   5   6
//! [ ] [S] (.) ... [ ] ... [ ]
//! [ ] [ ]         [ ]     [ ]
//! [S]             [S]     [S]
//!                 [ ]     [ ]
//!
//!  0   1   2   3   4   5   6
//! [ ] [ ] (.) ... [ ] ... [ ]
//! [S] [S]         [ ]     [ ]
//! [ ]             [ ]     [ ]
//!                 [S]     [S]
//!
//!
//! Picosecond 3:
//!  0   1   2   3   4   5   6
//! [ ] [ ] ... (.) [ ] ... [ ]
//! [S] [S]         [ ]     [ ]
//! [ ]             [ ]     [ ]
//!                 [S]     [S]
//!
//!  0   1   2   3   4   5   6
//! [S] [S] ... (.) [ ] ... [ ]
//! [ ] [ ]         [ ]     [ ]
//! [ ]             [S]     [S]
//!                 [ ]     [ ]
//!
//!
//! Picosecond 4:
//!  0   1   2   3   4   5   6
//! [S] [S] ... ... ( ) ... [ ]
//! [ ] [ ]         [ ]     [ ]
//! [ ]             [S]     [S]
//!                 [ ]     [ ]
//!
//!  0   1   2   3   4   5   6
//! [ ] [ ] ... ... ( ) ... [ ]
//! [S] [S]         [S]     [S]
//! [ ]             [ ]     [ ]
//!                 [ ]     [ ]
//!
//!
//! Picosecond 5:
//!  0   1   2   3   4   5   6
//! [ ] [ ] ... ... [ ] (.) [ ]
//! [S] [S]         [S]     [S]
//! [ ]             [ ]     [ ]
//!                 [ ]     [ ]
//!
//!  0   1   2   3   4   5   6
//! [ ] [S] ... ... [S] (.) [S]
//! [ ] [ ]         [ ]     [ ]
//! [S]             [ ]     [ ]
//!                 [ ]     [ ]
//!
//!
//! Picosecond 6:
//!  0   1   2   3   4   5   6
//! [ ] [S] ... ... [S] ... (S)
//! [ ] [ ]         [ ]     [ ]
//! [S]             [ ]     [ ]
//!                 [ ]     [ ]
//!
//!  0   1   2   3   4   5   6
//! [ ] [ ] ... ... [ ] ... ( )
//! [S] [S]         [S]     [S]
//! [ ]             [ ]     [ ]
//!                 [ ]     [ ]
//! ```
//!
//! In this situation, you are **caught** in layers `0` and `6`, because your packet entered the
//! layer when its scanner was at the top when you entered it. You are **not** caught in layer `1`,
//! since the scanner moved into the top of the layer once you were already there.
//!
//! The **severity** of getting caught on a layer is equal to its **depth** multiplied by its
//! **range**. (Ignore layers in which you do not get caught.) The severity of the whole trip is the
//! sum of these values. In the example above, the trip severity is `0*3 + 6*4 = 24`.
//!
//! Given the details of the firewall you've recorded, if you leave immediately, **what is the
//! severity of your whole trip**?

use anyhow::Result;

pub const INPUT: &str = include_str!("d13.txt");

pub fn solve_part_one(input: &str) -> Result<i64> {
    Ok(0)
}

pub fn solve_part_two(input: &str) -> Result<i64> {
    Ok(0)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn part_one() {}

    #[test]
    fn part_two() {}
}