1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
//! # Day 3: Spiral Memory
//!
//! You come across an experimental new kind of memory stored on an infinite two-dimensional grid.
//!
//! Each square on the grid is allocated in a spiral pattern starting at a location marked `1` and
//! then counting up while spiraling outward. For example, the first few squares are allocated like
//! this:
//!
//! ```txt
//! 17  16  15  14  13
//! 18   5   4   3  12
//! 19   6   1   2  11
//! 20   7   8   9  10
//! 21  22  23---> ...
//! ```
//!
//! While this is very space-efficient (no squares are skipped), requested data must be carried back
//! to square `1` (the location of the only access port for this memory system) by programs that can
//! only move up, down, left, or right. They always take the shortest path: the [Manhattan Distance]
//! between the location of the data and square `1`.
//!
//! For example:
//!
//! - Data from square `1` is carried `0` steps, since it's at the access port.
//! - Data from square `12` is carried `3` steps, such as: down, left, left.
//! - Data from square `23` is carried only `2` steps: up twice.
//! - Data from square `1024` must be carried `31` steps.
//!
//! **How many steps** are required to carry the data from the square identified in your puzzle
//! input all the way to the access port?
//!
//! [Manhattan Distance]: https://en.wikipedia.org/wiki/Taxicab_geometry
//!
//! ## Part Two
//!
//! As a stress test on the system, the programs here clear the grid and then store the value `1` in
//! square `1`. Then, in the same allocation order as shown above, they store the sum of the values
//! in all adjacent squares, including diagonals.
//!
//! So, the first few squares' values are chosen as follows:
//!
//! - Square `1` starts with the value `1`.
//! - Square `2` has only one adjacent filled square (with value `1`), so it also stores `1`.
//! - Square `3` has both of the above squares as neighbors and stores the sum of their values, `2`.
//! - Square `4` has all three of the aforementioned squares as neighbors and stores the sum of
//!   their values, `4`.
//! - Square `5` only has the first and fourth squares as neighbors, so it gets the value `5`.
//!
//! Once a square is written, its value does not change. Therefore, the first few squares would
//! receive the following values:
//!
//! ```txt
//! 147  142  133  122   59
//! 304    5    4    2   57
//! 330   10    1    1   54
//! 351   11   23   25   26
//! 362  747  806--->   ...
//! ```
//!
//! What is the **first value written** that is **larger** than your puzzle input?

use std::collections::HashMap;

use anyhow::{Context, Result};

pub const INPUT: &str = include_str!("d03.txt");

#[derive(Default)]
struct GridIterator {
    pos: (i32, i32),
    round: i32,
    step: u32,
}

impl Iterator for GridIterator {
    type Item = (i32, i32);

    fn next(&mut self) -> Option<Self::Item> {
        self.step += 1;

        if self.step == 1 {
            return Some(self.pos);
        }

        if self.pos.0 == self.round && self.pos.1 == self.round {
            self.round += 1;
            self.pos.0 += 1;
            return Some(self.pos);
        }

        if self.pos.0 == self.round && self.pos.1 > -self.round {
            self.pos.1 -= 1;
            return Some(self.pos);
        }

        if self.pos.1 == -self.round && self.pos.0 > -self.round {
            self.pos.0 -= 1;
            return Some(self.pos);
        }

        if self.pos.0 == -self.round && self.pos.1 < self.round {
            self.pos.1 += 1;
            return Some(self.pos);
        }

        if self.pos.1 == self.round && self.pos.0 < self.round {
            self.pos.0 += 1;
            return Some(self.pos);
        }

        None
    }
}

pub fn solve_part_one(input: &str) -> Result<i32> {
    Ok(GridIterator::default()
        .nth(parse_input(input)? - 1)
        .map(|(x, y)| x.abs() + y.abs())
        .unwrap())
}

pub fn solve_part_two(input: &str) -> Result<u32> {
    let input = parse_input(input)?;
    let iter = GridIterator::default();
    let mut grid = HashMap::new();

    grid.insert((0, 0), 1);

    for pos in iter.skip(1) {
        let mut sum = 0;

        for dx in -1..=1 {
            for dy in -1..=1 {
                if dx == dy && dx == 0 {
                    continue;
                }

                sum += *grid.entry((pos.0 + dx, pos.1 + dy)).or_default();
            }
        }

        if sum > input as u32 {
            return Ok(sum);
        }

        grid.insert(pos, sum);
    }
    Ok(0)
}

fn parse_input(input: &str) -> Result<usize> {
    input.lines().next().context("expected a line with digit")?.parse().map_err(Into::into)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn part_one() {
        assert_eq!(0, solve_part_one("1").unwrap());
        assert_eq!(3, solve_part_one("12").unwrap());
        assert_eq!(2, solve_part_one("23").unwrap());
        assert_eq!(31, solve_part_one("1024").unwrap());
    }

    #[test]
    fn part_two() {
        assert_eq!(2, solve_part_two("1").unwrap());
        assert_eq!(4, solve_part_two("2").unwrap());
        assert_eq!(4, solve_part_two("3").unwrap());
        assert_eq!(5, solve_part_two("4").unwrap());
        assert_eq!(10, solve_part_two("5").unwrap());
    }
}